To be able to edit code and run cells, you need to run the notebook yourself. Where would you like to run the notebook?

In the cloud (experimental)

Binder is a free, open source service that runs scientific notebooks in the cloud! It will take a while, usually 2-7 minutes to get a session.

On your computer

(Recommended if you want to store your changes.)

  1. Copy the notebook URL:
  2. Run Pluto

    (Also see: How to install Julia and Pluto)

  3. Paste URL in the Open box

Frontmatter

If you are publishing this notebook on the web, you can set the parameters below to provide HTML metadata. This is useful for search engines and social media.

Author 1
👀 Reading hidden code
107 μs

Computational Thinking

Math from Computation

Math with Computation




Alan Edelman
👀 Reading hidden code
2.1 ms
👀 Reading hidden code
@bind prof_size Slider(0 : 0.01 : 2)
278 ms
👀 Reading hidden code
81.2 μs

n = 3

👀 Reading hidden code
18.5 ms
👀 Reading hidden code
Any[prettylist(combinations(1:n, k) .|> onoff) for k in 1:n]
167 ms

More options

👀 Reading hidden code
165 μs
👀 Reading hidden code
Any[prettylist(combinations(1:n, k)) for k in 1:n]
45.8 μs
let
bar(
[length(combinations(1:n, k)) for k in 1:n],
dpi=96, size=(400,200), leg=false
)
end
👀 Reading hidden code
4.2 s
👀 Reading hidden code
5.7 ms
let
bar(
[length(combinations(1:n_again, k)) for k in 1:n_again],
dpi=96, size=(600,300), leg=false
)
end
👀 Reading hidden code
847 μs

k = 1

md"k = $(@bind k Slider(1:n, show_value=true))"
👀 Reading hidden code
12.3 ms
[1]
[2]
[3]
combinations(1:n, k) |> prettylist
👀 Reading hidden code
4.4 ms
prettylist (generic function with 1 method)
👀 Reading hidden code
815 μs
onoff (generic function with 1 method)
👀 Reading hidden code
1.0 ms
begin
using Pkg
Pkg.activate(mktempdir())
Pkg.add([
Pkg.PackageSpec(name="PlutoUI", version="0.6.7-0.6"),
Pkg.PackageSpec(name="Plots", version="1.10.1-1"),
Pkg.PackageSpec(name="Combinatorics"),
])

using Plots
gr()
using PlutoUI
using Combinatorics
end
👀 Reading hidden code
❔
  Activating new project at `/tmp/jl_AD35XV`
    Updating registry at `~/.julia/registries/General.toml`
   Resolving package versions...
   Installed Combinatorics ─ v1.0.3
    Updating `/tmp/jl_AD35XV/Project.toml`
  [861a8166] + Combinatorics v1.0.3
  [91a5bcdd] + Plots v1.40.14
  [7f904dfe] + PlutoUI v0.6.11
    Updating `/tmp/jl_AD35XV/Manifest.toml`
  [66dad0bd] + AliasTables v1.1.3
  [d1d4a3ce] + BitFlags v0.1.9
  [d360d2e6] + ChainRulesCore v1.25.1
  [9e997f8a] + ChangesOfVariables v0.1.10
  [944b1d66] + CodecZlib v0.7.8
  [35d6a980] + ColorSchemes v3.29.0
  [3da002f7] + ColorTypes v0.12.1
  [c3611d14] + ColorVectorSpace v0.11.0
  [5ae59095] + Colors v0.13.1
  [861a8166] + Combinatorics v1.0.3
  [34da2185] + Compat v4.16.0
  [f0e56b4a] + ConcurrentUtilities v2.5.0
  [187b0558] + ConstructionBase v1.5.8
  [d38c429a] + Contour v0.6.3
  [9a962f9c] + DataAPI v1.16.0
  [864edb3b] + DataStructures v0.18.22
  [ffbed154] + DocStringExtensions v0.9.5
  [460bff9d] + ExceptionUnwrapping v0.1.11
  [c87230d0] + FFMPEG v0.4.2
  [53c48c17] + FixedPointNumbers v0.8.5
  [1fa38f19] + Format v1.3.7
  [28b8d3ca] + GR v0.73.6
  [42e2da0e] + Grisu v1.0.2
  [cd3eb016] + HTTP v1.10.16
  [3587e190] + InverseFunctions v0.1.17
  [92d709cd] + IrrationalConstants v0.2.4
  [1019f520] + JLFzf v0.1.11
  [692b3bcd] + JLLWrappers v1.7.0
  [682c06a0] + JSON v0.21.4
  [b964fa9f] + LaTeXStrings v1.4.0
  [23fbe1c1] + Latexify v0.16.8
  [2ab3a3ac] + LogExpFunctions v0.3.28
  [e6f89c97] + LoggingExtras v1.1.0
  [1914dd2f] + MacroTools v0.5.16
  [739be429] + MbedTLS v1.1.9
  [442fdcdd] + Measures v0.3.2
  [e1d29d7a] + Missings v1.2.0
  [77ba4419] + NaNMath v1.0.3
  [4d8831e6] + OpenSSL v1.5.0
  [bac558e1] + OrderedCollections v1.8.1
  [69de0a69] + Parsers v2.8.3
  [ccf2f8ad] + PlotThemes v3.3.0
  [995b91a9] + PlotUtils v1.4.3
  [91a5bcdd] + Plots v1.40.14
  [7f904dfe] + PlutoUI v0.6.11
  [aea7be01] + PrecompileTools v1.2.1
  [21216c6a] + Preferences v1.4.3
  [43287f4e] + PtrArrays v1.3.0
  [3cdcf5f2] + RecipesBase v1.3.4
  [01d81517] + RecipesPipeline v0.6.12
  [189a3867] + Reexport v1.2.2
  [05181044] + RelocatableFolders v1.0.1
  [ae029012] + Requires v1.3.1
  [6c6a2e73] + Scratch v1.2.1
  [992d4aef] + Showoff v1.0.3
  [777ac1f9] + SimpleBufferStream v1.2.0
  [a2af1166] + SortingAlgorithms v1.2.1
  [860ef19b] + StableRNGs v1.0.3
  [82ae8749] + StatsAPI v1.7.1
  [2913bbd2] + StatsBase v0.34.4
  [fd094767] + Suppressor v0.2.8
  [62fd8b95] + TensorCore v0.1.1
  [3bb67fe8] + TranscodingStreams v0.11.3
  [5c2747f8] + URIs v1.5.2
  [1cfade01] + UnicodeFun v0.4.1
  [1986cc42] + Unitful v1.23.1
  [45397f5d] + UnitfulLatexify v1.7.0
  [41fe7b60] + Unzip v0.2.0
  [6e34b625] + Bzip2_jll v1.0.9+0
  [83423d85] + Cairo_jll v1.18.5+0
  [ee1fde0b] + Dbus_jll v1.16.2+0
  [2702e6a9] + EpollShim_jll v0.0.20230411+1
  [2e619515] + Expat_jll v2.6.5+0
  [b22a6f82] + FFMPEG_jll v4.4.4+1
  [a3f928ae] + Fontconfig_jll v2.16.0+0
  [d7e528f0] + FreeType2_jll v2.13.4+0
  [559328eb] + FriBidi_jll v1.0.17+0
  [0656b61e] + GLFW_jll v3.4.0+2
  [d2c73de3] + GR_jll v0.73.6+0
  [78b55507] + Gettext_jll v0.21.0+0
  [7746bdde] + Glib_jll v2.84.0+0
  [3b182d85] + Graphite2_jll v1.3.15+0
  [2e76f6c2] + HarfBuzz_jll v8.5.1+0
  [aacddb02] + JpegTurbo_jll v3.1.1+0
  [c1c5ebd0] + LAME_jll v3.100.2+0
  [88015f11] + LERC_jll v3.0.0+1
  [1d63c593] + LLVMOpenMP_jll v18.1.8+0
  [dd4b983a] + LZO_jll v2.10.3+0
  [e9f186c6] + Libffi_jll v3.4.7+0
  [7e76a0d4] + Libglvnd_jll v1.7.1+1
  [94ce4f54] + Libiconv_jll v1.18.0+0
  [4b2f31a3] + Libmount_jll v2.41.0+0
  [89763e89] + Libtiff_jll v4.5.1+1
  [38a345b3] + Libuuid_jll v2.41.0+0
  [e7412a2a] + Ogg_jll v1.3.5+1
  [458c3c95] + OpenSSL_jll v3.5.0+0
  [91d4177d] + Opus_jll v1.3.3+0
  [36c8627f] + Pango_jll v1.56.3+0
  [30392449] + Pixman_jll v0.44.2+0
  [c0090381] + Qt6Base_jll v6.7.1+1
  [a44049a8] + Vulkan_Loader_jll v1.3.243+0
  [a2964d1f] + Wayland_jll v1.23.1+0
  [2381bf8a] + Wayland_protocols_jll v1.44.0+0
  [02c8fc9c] + XML2_jll v2.13.6+1
  [ffd25f8a] + XZ_jll v5.8.1+0
  [f67eecfb] + Xorg_libICE_jll v1.1.2+0
  [c834827a] + Xorg_libSM_jll v1.2.6+0
  [4f6342f7] + Xorg_libX11_jll v1.8.12+0
  [0c0b7dd1] + Xorg_libXau_jll v1.0.13+0
  [935fb764] + Xorg_libXcursor_jll v1.2.4+0
  [a3789734] + Xorg_libXdmcp_jll v1.1.6+0
  [1082639a] + Xorg_libXext_jll v1.3.7+0
  [d091e8ba] + Xorg_libXfixes_jll v6.0.1+0
  [a51aa0fd] + Xorg_libXi_jll v1.8.3+0
  [d1454406] + Xorg_libXinerama_jll v1.1.6+0
  [ec84b674] + Xorg_libXrandr_jll v1.5.5+0
  [ea2f1a96] + Xorg_libXrender_jll v0.9.12+0
  [c7cfdc94] + Xorg_libxcb_jll v1.17.1+0
  [cc61e674] + Xorg_libxkbfile_jll v1.1.3+0
  [e920d4aa] + Xorg_xcb_util_cursor_jll v0.1.4+0
  [12413925] + Xorg_xcb_util_image_jll v0.4.1+0
  [2def613f] + Xorg_xcb_util_jll v0.4.1+0
  [975044d2] + Xorg_xcb_util_keysyms_jll v0.4.1+0
  [0d47668e] + Xorg_xcb_util_renderutil_jll v0.3.10+0
  [c22f9ab0] + Xorg_xcb_util_wm_jll v0.4.2+0
  [35661453] + Xorg_xkbcomp_jll v1.4.7+0
  [33bec58e] + Xorg_xkeyboard_config_jll v2.44.0+0
  [c5fb5394] + Xorg_xtrans_jll v1.6.0+0
  [3161d3a3] + Zstd_jll v1.5.7+1
  [35ca27e7] + eudev_jll v3.2.14+0
  [214eeab7] + fzf_jll v0.61.1+0
  [a4ae2306] + libaom_jll v3.11.0+0
  [0ac62f75] + libass_jll v0.15.2+0
  [1183f4f0] + libdecor_jll v0.2.2+0
  [2db6ffa8] + libevdev_jll v1.13.4+0
  [f638f0a6] + libfdk_aac_jll v2.0.3+0
  [36db933b] + libinput_jll v1.28.1+0
  [b53b4c65] + libpng_jll v1.6.49+0
  [f27f6e37] + libvorbis_jll v1.3.7+2
  [009596ad] + mtdev_jll v1.1.7+0
  [1270edf5] + x264_jll v2021.5.5+0
  [dfaa095f] + x265_jll v3.5.0+0
  [d8fb68d0] + xkbcommon_jll v1.8.1+0
  [0dad84c5] + ArgTools
  [56f22d72] + Artifacts
  [2a0f44e3] + Base64
  [ade2ca70] + Dates
  [8bb1440f] + DelimitedFiles
  [f43a241f] + Downloads
  [7b1f6079] + FileWatching
  [b77e0a4c] + InteractiveUtils
  [b27032c2] + LibCURL
  [76f85450] + LibGit2
  [8f399da3] + Libdl
  [37e2e46d] + LinearAlgebra
  [56ddb016] + Logging
  [d6f4376e] + Markdown
  [a63ad114] + Mmap
  [ca575930] + NetworkOptions
  [44cfe95a] + Pkg
  [de0858da] + Printf
  [3fa0cd96] + REPL
  [9a3f8284] + Random
  [ea8e919c] + SHA
  [9e88b42a] + Serialization
  [6462fe0b] + Sockets
  [2f01184e] + SparseArrays
  [10745b16] + Statistics
  [fa267f1f] + TOML
  [a4e569a6] + Tar
  [8dfed614] + Test
  [cf7118a7] + UUIDs
  [4ec0a83e] + Unicode
  [e66e0078] + CompilerSupportLibraries_jll
  [deac9b47] + LibCURL_jll
  [29816b5a] + LibSSH2_jll
  [c8ffd9c3] + MbedTLS_jll
  [14a3606d] + MozillaCACerts_jll
  [4536629a] + OpenBLAS_jll
  [05823500] + OpenLibm_jll
  [efcefdf7] + PCRE2_jll
  [83775a58] + Zlib_jll
  [8e850b90] + libblastrampoline_jll
  [8e850ede] + nghttp2_jll
  [3f19e933] + p7zip_jll
Precompiling project...
Combinatorics
  1 dependency successfully precompiled in 1 seconds (150 already precompiled)
8.0 s

First example

asdfasdf

👀 Reading hidden code
206 μs

Exercise 1: Calculus without calculus

👀 Reading hidden code
251 μs

Before we jump in to simulating the SIR equations, let's experiment with a simple 1D function. In calculus, we learn techniques for differentiating and integrating symbolic equations, e.g. ddxxn=nxn1. But in real applications, it is often impossible to apply these techniques, either because the problem is too complicated to solve symbolically, or because our problem has no symbolic expression, like when working with experimental results.

Instead, we use ✨ computers ✨ to approximate derivatives and integrals. Instead of applying rules to symbolic expressions, we use much simpler strategies that only use the output values of our function.

As a first example, we will approximate the derivative of a function. Our method is inspired by the analytical definition of the derivative!

f(a):=limh0f(a+h)f(a)h.

The finite difference method simply fixes a small value for h, say h=103, and then approximates the derivative as:

f(a)f(a+h)f(a)h.

👀 Reading hidden code
516 μs

Exercise 1.1 - tangent line

👉 Write a function finite_difference_slope that takes a function f and numbers a and h. It returns the slope f(a), approximated using the finite difference formula above.

👀 Reading hidden code
285 μs
finite_difference_slope (generic function with 2 methods)
👀 Reading hidden code
730 μs
👀 Reading hidden code
8.5 μs
0.2
👀 Reading hidden code
3.9 ms

Got it!

Good job!

👀 Reading hidden code
2.4 ms

👉 Write a function tangent_line that takes the same arguments f, a and g, but it returns a function. This function (RR) is the tangent line with slope f(a) (computed using finite_difference_slope) that passes through (a,f(a)).

👀 Reading hidden code
322 μs

Hint

Remember that functions are objects! For example, here is a function that returns the square root function:

function the_square_root_function()
	f = x -> sqrt(x)
	return f
end
👀 Reading hidden code
42.2 ms
tangent_line (generic function with 1 method)
👀 Reading hidden code
1.0 ms
👀 Reading hidden code
8.4 μs

Got it!

Awesome!

👀 Reading hidden code
3.2 ms
👀 Reading hidden code
12.1 ms
👀 Reading hidden code
912 ms
👀 Reading hidden code
573 μs

The slider below controls h using a log scale. In the (mathematical) definition of the derivative, we take limh0. This corresponds to moving the slider to the left.

Notice that, as you decrease h, the tangent line gets more accurate, but what happens if you make h too small?

👀 Reading hidden code
315 μs
👀 Reading hidden code
15.7 ms
0.31622776601683794
👀 Reading hidden code
14.6 μs
👀 Reading hidden code
14.8 μs

Exercise 1.2 - antiderivative

In the finite differences method, we approximated the derivative of a function:

f(a)f(a+h)f(a)h

We can do something very similar to approximate the 'antiderivate' of a function. Finding the antiderivative means that we use the slope f to compute f numerically!

This antiderivative problem is illustrated below. The only information that we have is the slope at any point aR, and we have one initial value, f(1).

👀 Reading hidden code
651 μs
👀 Reading hidden code
618 μs
👀 Reading hidden code
710 μs
👀 Reading hidden code
164 ms

Using only this information, we want to reconstruct f.

By rearranging the equation above, we get the Euler method:

f(a+h)hf(a)+f(a)

Using this formula, we only need to know the value f(a) and the slope f(a) of a function at a to get the value at a+h. Doing this repeatedly can give us the value at a+2h, at a+3h, etc., all from one initial value f(a).

👉 Write a function euler_integrate_step that applies this formula to a known function f at a, with step size h and the initial value f(a). It returns the next value, f(a+h).

👀 Reading hidden code
613 μs
euler_integrate_step (generic function with 1 method)
👀 Reading hidden code
494 μs
👀 Reading hidden code
8.8 μs

Got it!

Keep it up!

👀 Reading hidden code
27.7 ms

👉 Write a function euler_integrate that takes takes a known function f, the initial value f(a) and a range T with a == first(T) and h == step(T). It applies the function euler_integrate_step repeatedly, once per entry in T, to produce the sequence of values f(a+h), f(a+2h), etc.

👀 Reading hidden code
248 μs
euler_integrate (generic function with 1 method)
👀 Reading hidden code
1.2 ms
👀 Reading hidden code
8.9 μs

Let's try it out on f(x)=3x2 and T ranging from 0 to 10.

We already know the analytical solution f(x)=x3, so the result should be an array going from (approximately) 0.0 to 1000.0.

👀 Reading hidden code
265 μs
👀 Reading hidden code
84.5 ms

Got it!

Good job!

👀 Reading hidden code
10.7 ms
👀 Reading hidden code
625 μs
👀 Reading hidden code
426 ms

You see that our numerical antiderivate is not very accurate, but we can get a smaller error by choosing a smaller step size. Try it out!

There are also alternative integration methods that are more accurate with the same step size. Some methods also use the second derivative, other methods use multiple steps at once, etc.! This is the study of Numerical Methods.

👀 Reading hidden code
237 μs

Some cool things

👀 Reading hidden code
201 μs

👀 Reading hidden code
66.0 μs

asdfasdf

md"asdfasdf"
👀 Reading hidden code
168 μs

Function library

Just some helper functions used in the notebook.

👀 Reading hidden code
210 μs
hint (generic function with 1 method)
👀 Reading hidden code
464 μs
almost (generic function with 1 method)
👀 Reading hidden code
450 μs
still_missing (generic function with 2 methods)
👀 Reading hidden code
801 μs
keep_working (generic function with 2 methods)
👀 Reading hidden code
1.2 ms
👀 Reading hidden code
9.8 ms
correct (generic function with 2 methods)
👀 Reading hidden code
679 μs
not_defined (generic function with 1 method)
👀 Reading hidden code
755 μs