Computational Thinking
Math from Computation
Math with Computation
Alan Edelman
n =
🌕🌑🌑 🌑🌕🌑 🌑🌑🌕
🌕🌕🌑 🌕🌑🌕 🌑🌕🌕
🌕🌕🌕
More options
[1] [2] [3]
[1, 2] [1, 3] [2, 3]
[1, 2, 3]
k =
[1]
[2]
[3]
prettylist (generic function with 1 method)
onoff (generic function with 1 method)
Activating new project at `/tmp/jl_AD35XV` Updating registry at `~/.julia/registries/General.toml` Resolving package versions... Installed Combinatorics ─ v1.0.3 Updating `/tmp/jl_AD35XV/Project.toml` [861a8166] + Combinatorics v1.0.3 [91a5bcdd] + Plots v1.40.14 [7f904dfe] + PlutoUI v0.6.11 Updating `/tmp/jl_AD35XV/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [d1d4a3ce] + BitFlags v0.1.9 [d360d2e6] + ChainRulesCore v1.25.1 [9e997f8a] + ChangesOfVariables v0.1.10 [944b1d66] + CodecZlib v0.7.8 [35d6a980] + ColorSchemes v3.29.0 [3da002f7] + ColorTypes v0.12.1 [c3611d14] + ColorVectorSpace v0.11.0 [5ae59095] + Colors v0.13.1 [861a8166] + Combinatorics v1.0.3 [34da2185] + Compat v4.16.0 [f0e56b4a] + ConcurrentUtilities v2.5.0 [187b0558] + ConstructionBase v1.5.8 [d38c429a] + Contour v0.6.3 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.18.22 [ffbed154] + DocStringExtensions v0.9.5 [460bff9d] + ExceptionUnwrapping v0.1.11 [c87230d0] + FFMPEG v0.4.2 [53c48c17] + FixedPointNumbers v0.8.5 [1fa38f19] + Format v1.3.7 [28b8d3ca] + GR v0.73.6 [42e2da0e] + Grisu v1.0.2 [cd3eb016] + HTTP v1.10.16 [3587e190] + InverseFunctions v0.1.17 [92d709cd] + IrrationalConstants v0.2.4 [1019f520] + JLFzf v0.1.11 [692b3bcd] + JLLWrappers v1.7.0 [682c06a0] + JSON v0.21.4 [b964fa9f] + LaTeXStrings v1.4.0 [23fbe1c1] + Latexify v0.16.8 [2ab3a3ac] + LogExpFunctions v0.3.28 [e6f89c97] + LoggingExtras v1.1.0 [1914dd2f] + MacroTools v0.5.16 [739be429] + MbedTLS v1.1.9 [442fdcdd] + Measures v0.3.2 [e1d29d7a] + Missings v1.2.0 [77ba4419] + NaNMath v1.0.3 [4d8831e6] + OpenSSL v1.5.0 [bac558e1] + OrderedCollections v1.8.1 [69de0a69] + Parsers v2.8.3 [ccf2f8ad] + PlotThemes v3.3.0 [995b91a9] + PlotUtils v1.4.3 [91a5bcdd] + Plots v1.40.14 [7f904dfe] + PlutoUI v0.6.11 [aea7be01] + PrecompileTools v1.2.1 [21216c6a] + Preferences v1.4.3 [43287f4e] + PtrArrays v1.3.0 [3cdcf5f2] + RecipesBase v1.3.4 [01d81517] + RecipesPipeline v0.6.12 [189a3867] + Reexport v1.2.2 [05181044] + RelocatableFolders v1.0.1 [ae029012] + Requires v1.3.1 [6c6a2e73] + Scratch v1.2.1 [992d4aef] + Showoff v1.0.3 [777ac1f9] + SimpleBufferStream v1.2.0 [a2af1166] + SortingAlgorithms v1.2.1 [860ef19b] + StableRNGs v1.0.3 [82ae8749] + StatsAPI v1.7.1 [2913bbd2] + StatsBase v0.34.4 [fd094767] + Suppressor v0.2.8 [62fd8b95] + TensorCore v0.1.1 [3bb67fe8] + TranscodingStreams v0.11.3 [5c2747f8] + URIs v1.5.2 [1cfade01] + UnicodeFun v0.4.1 [1986cc42] + Unitful v1.23.1 [45397f5d] + UnitfulLatexify v1.7.0 [41fe7b60] + Unzip v0.2.0 [6e34b625] + Bzip2_jll v1.0.9+0 [83423d85] + Cairo_jll v1.18.5+0 [ee1fde0b] + Dbus_jll v1.16.2+0 [2702e6a9] + EpollShim_jll v0.0.20230411+1 [2e619515] + Expat_jll v2.6.5+0 [b22a6f82] + FFMPEG_jll v4.4.4+1 [a3f928ae] + Fontconfig_jll v2.16.0+0 [d7e528f0] + FreeType2_jll v2.13.4+0 [559328eb] + FriBidi_jll v1.0.17+0 [0656b61e] + GLFW_jll v3.4.0+2 [d2c73de3] + GR_jll v0.73.6+0 [78b55507] + Gettext_jll v0.21.0+0 [7746bdde] + Glib_jll v2.84.0+0 [3b182d85] + Graphite2_jll v1.3.15+0 [2e76f6c2] + HarfBuzz_jll v8.5.1+0 [aacddb02] + JpegTurbo_jll v3.1.1+0 [c1c5ebd0] + LAME_jll v3.100.2+0 [88015f11] + LERC_jll v3.0.0+1 [1d63c593] + LLVMOpenMP_jll v18.1.8+0 [dd4b983a] + LZO_jll v2.10.3+0 [e9f186c6] + Libffi_jll v3.4.7+0 [7e76a0d4] + Libglvnd_jll v1.7.1+1 [94ce4f54] + Libiconv_jll v1.18.0+0 [4b2f31a3] + Libmount_jll v2.41.0+0 [89763e89] + Libtiff_jll v4.5.1+1 [38a345b3] + Libuuid_jll v2.41.0+0 [e7412a2a] + Ogg_jll v1.3.5+1 [458c3c95] + OpenSSL_jll v3.5.0+0 [91d4177d] + Opus_jll v1.3.3+0 [36c8627f] + Pango_jll v1.56.3+0 [30392449] + Pixman_jll v0.44.2+0 [c0090381] + Qt6Base_jll v6.7.1+1 [a44049a8] + Vulkan_Loader_jll v1.3.243+0 [a2964d1f] + Wayland_jll v1.23.1+0 [2381bf8a] + Wayland_protocols_jll v1.44.0+0 [02c8fc9c] + XML2_jll v2.13.6+1 [ffd25f8a] + XZ_jll v5.8.1+0 [f67eecfb] + Xorg_libICE_jll v1.1.2+0 [c834827a] + Xorg_libSM_jll v1.2.6+0 [4f6342f7] + Xorg_libX11_jll v1.8.12+0 [0c0b7dd1] + Xorg_libXau_jll v1.0.13+0 [935fb764] + Xorg_libXcursor_jll v1.2.4+0 [a3789734] + Xorg_libXdmcp_jll v1.1.6+0 [1082639a] + Xorg_libXext_jll v1.3.7+0 [d091e8ba] + Xorg_libXfixes_jll v6.0.1+0 [a51aa0fd] + Xorg_libXi_jll v1.8.3+0 [d1454406] + Xorg_libXinerama_jll v1.1.6+0 [ec84b674] + Xorg_libXrandr_jll v1.5.5+0 [ea2f1a96] + Xorg_libXrender_jll v0.9.12+0 [c7cfdc94] + Xorg_libxcb_jll v1.17.1+0 [cc61e674] + Xorg_libxkbfile_jll v1.1.3+0 [e920d4aa] + Xorg_xcb_util_cursor_jll v0.1.4+0 [12413925] + Xorg_xcb_util_image_jll v0.4.1+0 [2def613f] + Xorg_xcb_util_jll v0.4.1+0 [975044d2] + Xorg_xcb_util_keysyms_jll v0.4.1+0 [0d47668e] + Xorg_xcb_util_renderutil_jll v0.3.10+0 [c22f9ab0] + Xorg_xcb_util_wm_jll v0.4.2+0 [35661453] + Xorg_xkbcomp_jll v1.4.7+0 [33bec58e] + Xorg_xkeyboard_config_jll v2.44.0+0 [c5fb5394] + Xorg_xtrans_jll v1.6.0+0 [3161d3a3] + Zstd_jll v1.5.7+1 [35ca27e7] + eudev_jll v3.2.14+0 [214eeab7] + fzf_jll v0.61.1+0 [a4ae2306] + libaom_jll v3.11.0+0 [0ac62f75] + libass_jll v0.15.2+0 [1183f4f0] + libdecor_jll v0.2.2+0 [2db6ffa8] + libevdev_jll v1.13.4+0 [f638f0a6] + libfdk_aac_jll v2.0.3+0 [36db933b] + libinput_jll v1.28.1+0 [b53b4c65] + libpng_jll v1.6.49+0 [f27f6e37] + libvorbis_jll v1.3.7+2 [009596ad] + mtdev_jll v1.1.7+0 [1270edf5] + x264_jll v2021.5.5+0 [dfaa095f] + x265_jll v3.5.0+0 [d8fb68d0] + xkbcommon_jll v1.8.1+0 [0dad84c5] + ArgTools [56f22d72] + Artifacts [2a0f44e3] + Base64 [ade2ca70] + Dates [8bb1440f] + DelimitedFiles [f43a241f] + Downloads [7b1f6079] + FileWatching [b77e0a4c] + InteractiveUtils [b27032c2] + LibCURL [76f85450] + LibGit2 [8f399da3] + Libdl [37e2e46d] + LinearAlgebra [56ddb016] + Logging [d6f4376e] + Markdown [a63ad114] + Mmap [ca575930] + NetworkOptions [44cfe95a] + Pkg [de0858da] + Printf [3fa0cd96] + REPL [9a3f8284] + Random [ea8e919c] + SHA [9e88b42a] + Serialization [6462fe0b] + Sockets [2f01184e] + SparseArrays [10745b16] + Statistics [fa267f1f] + TOML [a4e569a6] + Tar [8dfed614] + Test [cf7118a7] + UUIDs [4ec0a83e] + Unicode [e66e0078] + CompilerSupportLibraries_jll [deac9b47] + LibCURL_jll [29816b5a] + LibSSH2_jll [c8ffd9c3] + MbedTLS_jll [14a3606d] + MozillaCACerts_jll [4536629a] + OpenBLAS_jll [05823500] + OpenLibm_jll [efcefdf7] + PCRE2_jll [83775a58] + Zlib_jll [8e850b90] + libblastrampoline_jll [8e850ede] + nghttp2_jll [3f19e933] + p7zip_jll Precompiling project... ✓ Combinatorics 1 dependency successfully precompiled in 1 seconds (150 already precompiled)
First example
asdfasdf
Exercise 1: Calculus without calculus
Before we jump in to simulating the SIR equations, let's experiment with a simple 1D function. In calculus, we learn techniques for differentiating and integrating symbolic equations, e.g.
Instead, we use ✨ computers ✨ to approximate derivatives and integrals. Instead of applying rules to symbolic expressions, we use much simpler strategies that only use the output values of our function.
As a first example, we will approximate the derivative of a function. Our method is inspired by the analytical definition of the derivative!
The finite difference method simply fixes a small value for
Exercise 1.1 - tangent line
👉 Write a function finite_difference_slope
that takes a function f
and numbers a
and h
. It returns the slope
finite_difference_slope (generic function with 2 methods)
0.2
Got it!
Good job!
👉 Write a function tangent_line
that takes the same arguments f
, a
and g
, but it returns a function. This function (finite_difference_slope
) that passes through
Hint
Remember that functions are objects! For example, here is a function that returns the square root function:
function the_square_root_function()
f = x -> sqrt(x)
return f
end
tangent_line (generic function with 1 method)
Got it!
Awesome!
The slider below controls
Notice that, as you decrease
0.31622776601683794
Exercise 1.2 - antiderivative
In the finite differences method, we approximated the derivative of a function:
We can do something very similar to approximate the 'antiderivate' of a function. Finding the antiderivative means that we use the slope
This antiderivative problem is illustrated below. The only information that we have is the slope at any point
Using only this information, we want to reconstruct
By rearranging the equation above, we get the Euler method:
Using this formula, we only need to know the value
👉 Write a function euler_integrate_step
that applies this formula to a known function
euler_integrate_step (generic function with 1 method)
Got it!
Keep it up!
👉 Write a function euler_integrate
that takes takes a known function T
with a == first(T)
and h == step(T)
. It applies the function euler_integrate_step
repeatedly, once per entry in T
, to produce the sequence of values
euler_integrate (generic function with 1 method)
Let's try it out on T
ranging from
We already know the analytical solution 0.0
to 1000.0
.
0.003
0.015
0.042
0.09
0.165
0.273
0.42
0.612
0.855
1.155
1.518
1.95
2.457
3.045
3.72
4.488
5.355
6.327
7.41
8.61
791.43
817.377
843.885
870.96
898.608
926.835
955.647
985.05
1015.05
1045.65
Got it!
Good job!
You see that our numerical antiderivate is not very accurate, but we can get a smaller error by choosing a smaller step size. Try it out!
There are also alternative integration methods that are more accurate with the same step size. Some methods also use the second derivative, other methods use multiple steps at once, etc.! This is the study of Numerical Methods.
Some cool things
asdfasdf
Function library
Just some helper functions used in the notebook.
hint (generic function with 1 method)
almost (generic function with 1 method)
still_missing (generic function with 2 methods)
keep_working (generic function with 2 methods)
Fantastic!
Splendid!
Great!
Yay ❤
Great! 🎉
Well done!
Keep it up!
Good job!
Awesome!
You got the right answer!
Let's move on to the next section.
correct (generic function with 2 methods)
not_defined (generic function with 1 method)